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ABSTRACT
We have discussed technical issues regarding supervised world
perception modeling and task planning of cooperative mobile
robots performing tactical tasks in unstructured environment.
We have introduced a hierarchy Supervisory Controller for
robust cooperative task deployment of heterogeneous semi-
autonomous robotic vehicles.  Primarily, we have described
functional and modular architecture of the Supervisory
Controller and presented our strategies for separation of
supervisory functions according to their level abstraction,
complexity, precedence, and intelligence.  Furthermore, we have
discussed control schemes for measure of performance and
measure of efficiency of our cooperative robots tested under
different task situations.  Results indicate the hybrid Supervisory
controller performs satisfactorily in most simulated cases.

Keywords: Cooperative Robots, Supervisory Control,
Measure of Performance, and Measure of Efficiency.

1.  INTRODUCTION
Cooperative robots are critically important for solving a number
of real-world problems.  Their applications span from civilian
search and rescue missions to military battlefield reconnaissance
and surveillance covert operations to deep space scientific
research explorations.  In very near future, potential commercial
applications of cooperative robots are foreseen to be ubiquitous.
The cooperative robots while benefit from inherent parallelism,
their robust control is both multi-folded and challenging to
achieve and sustain reliably.   Many different techniques and
approaches for mobile robots control have been developed.  The
proposed control techniques in literature can be, categorically,
classified as either deliberative, reactive, or hybrid in nature.

The control schemes that tend to be more deliberative require
relative more knowledge about the world.  They use this
knowledge to predict the outcome of their actions, an ability that
enables them to optimize their performance relative to their
model of the world.  Deliberative reasoning about task planning
of cooperative robots requires strong assumptions about this
world model.  Primary knowledge upon which the reasoning is
based on, should be consistent, reliable, and certain.  In a
dynamic world, where objects may have arbitrarily moves (i.e.,
in a battlefield or a crowded hallway), it is potentially risky to
rely on information that no longer be valid.  Instead, world

representational models are generally constructed at run-time
using a combination of past knowledge gained about the
environment and exteroceptive sensory data.

At the other end of the spectrum, the reactive control systems
attempt to tightly couple perception and action in order to
achieve faster robot response in dynamic and unstructured
worlds while minimizing computational overhead.  With a
purely reactive control system, it is rather difficult to achieve
planned deliberated tasks consistently. This is mainly due to
variability in world uncertainty and lack of robot’s knowledge
and ability in resolving conflicts between competitive world
perceptions in a given situation. In most cases, a wrongly
selected world perception may cause the robot an unrecoverable
deadlock situation or failure.

The temporal inconsistency and stability of the environment and
the robot’s immediate sensing inadequacy for a task are typically
coupled.  Difficulty in proper localization of a robot and the way
that the robot perceives its surrounding world also yield possible
situations that typically grounds erratic conflicts in decision
making process of the robot.  To demonstration this notion,
consider figure 1 that illustrates spatial configuration of three
cooperative robots.  Should each robot presume the other two
robots as obstacles or as its teammates approaching it
unintentionally?  One answer is it would be dependent on nature
of the task and how the navigational modes of the robots are
defined.  If the robots had reactive behavior, they would
probably try to find a way out of the crowd or avoid the
deadlock situation.  If the robots had deliberative behavior, each
robot might refer to its chronicle memory and try to reason why
the other robots are there in the first place before it makes any
decision.  Situation like this example can occur frequently
during task execution of cooperative robots within a limited
work environment. Hence, it is responsibility of an intelligent
supervisory system to deal with such situations in a manner that
causes least perplexity to plan execution of robots.

An overview of common conceptions of the behavior-based
approaches is given by Mataric [1].  Brooks [2] describes four
key concepts that lead to behavior-based robotic: situatedness,
embodiment, intelligence, and emergence.  The design of
behavior-based systems is often referred to as a "bottom up"
process, but this offers not so much to determination of the
structure of the system as to a basis in physical sensing and



action, and incremental development of sophistication from
simple to complex.  Namely, there are structured in terms of
observable activity that they produce, rather than traditional
functional decompositions.  The activity producing components,
behaviors, compete for actuator resources as well as share
perceptions of the world rather than any centralized
representation.

Recently, hybrid deliberative/reactive robotic architectures have
emerged that rely more heavily on explicit world representations
and tend to combine many aspects of traditional AI symbolic
methods with situated-based reasoning.  They operate based on
abstract representation of the world in light of providing faster
response, better robustness, and more tractable than deliberative
and reactive systems.  Hybrid architectures permit
reconfiguration of reactive control systems based on available
world knowledge through their ability to reason over the
underlying behavioral components.  However, building of such
hierarchy systems requires compromise and full utilization of
reactive and deliberative systems to maintain the desirable
system performance and efficiency.

An overview of approaches and issues in cooperative robotics
has been also reported in [3,4,5].  Parker [6] has demonstrated
multi-robot target observation using the ALLIANCE
Architecture, where action selection consists of inhibition
(through motivation behaviors).  As opposed to her architecture,
Pirajanian and Mataric [7] have developed an approach to multi-
robot coordination in the context of cooperative target
acquisition.   Their approach is based on multiple objective
behavior coordination extended to multiple cooperative robots.
They have demonstrated a mechanism for distributed command
fusion across a group of robots to pursue multiple goals in
parallel.  This technique enables individual robot to select
actions that no only benefit itself but also benefit the group as a
whole.   A significant amount of work in this area is being
conducted by researchers at NIST.  Their hierarchical control
architecture is shown to have capability in controlling several

unmanned mobile robotic vehicles in unstructured environment
using a hierarchy platoon level control scheme where the robots
follow a designated leader while maintaining a fair distance
apart [14].

Nonetheless, intelligent control of multi-agent robots is both
complex and challenging.  The complexity of the task is
contributed to a number of compounding factors including:
multi-agent task decomposition, task distribution, resource
allocation, sensory world perception modeling and data sharing,
pattern recognition and reasoning, skill learning and adaptation,
communication networking, man-machine interaction, and
others.  For intelligent strategic task planning, execution, and
monitoring of cooperative robots, one should be concerned with
many of above technical challenges.

In this paper, we will present a hybrid hierarchical
deliberative/reactive robotic architecture called, Supervisor
Mobility Controller - in short  "Supervisor"  for controlling a team
of cooperative robots.  By combining reactive and deliberative
navigational schemes, we have created a set of group
navigational techniques assisting task deployment of the robots.
The Supervisor has been tested for localization and dynamic
cooperative task planning of robots.  Performance and efficiency
of the system is measured on a physical robotic system
consisting of five cooperative robots.

The proposed Supervisor control system has been developed
under FMCell software [18].  FMCell provides tools for world
perception construction and sensors modeling in 3D virtual
simulation environment.  Other features of the software include:
high-level object-oriented environment with embedded robot
behavioral modeling tools, fast image processing tools, AI-based
inference engines for knowledge processing and reasoning, and
soft computing developmental tools such as neural networks,
fuzzy logics, and genetic algorithms for modeling, simulation
and validation of control strategies.

2.   SUPERVISOR ARCHITECTURE
The Supervisor was originally designed for control of semi-
autonomous robots operating under one central control unit.
The modular software implementation of the Supervisor is
presented in Figure 2.  Supervisor has a hierarchical
architecture and designed to handle hybrid reactive/deliberative
task deployment of the cooperative robots.  Detailed description
of different functions of this Supervisor is behind the scope of
this paper and can be found elsewhere [8,9].  The hierarchy
architecture consists of sensing, planning and acting
components.  The system allows direct interaction of the human
operator at different levels of abstract task planning, execution,
and monitoring with minimum restriction.  An exclusive
language allows for mission plans of the virtual robots with
concise details.  The supervisor can be used for control of both
simulated and physical cooperative robots ..   The same syntax
as used for programming of physical robots is used for
programming of the simulated robots.  This feature
significantly reduces development and implementation times

Figure 1.  Three Semi-autonomous Cooperative Robots in a   
Tactical Formation.

Figure 1.  Three Semi-autonomous Cooperative Robots in a   
Tactical Formation.



and makes it submissive to both software and hardware
requirements.

There are many good reasons for working with simulated
robots: “learning often requires experimenting with behaviors
that may occasionally produce unacceptable results,” [10].
Making mistakes on real physical robots can be sometimes
quite costly and dangerous.  Nolfi et. Al. [17] suggests that
simulated robots be used in developing control systems for real
robots when certain special conditions are taken into account.
However, one should not expect control systems that are
evolved in a simulated environment to behave exactly the same
in a real environment.  Environment has many degrees of
uncertainties, in particular in case of mobile robots where
skidding and slippage are inevitable.  To reduce this ambiguous
problem, one can literally add certain degree of white noise to
parameters having anticipated uncertainties.  For instance, in
dead-reckoning computation of robots, one may add random
noise to offset encoders and compass readings of the robots and
mimic irregularity in mobility behavior of the simulated robots
modeled as if they are operating in unstructured environment.

In our approach, we consider simple unknown world with
geometrically identifiable obstacles.  Construction of the world
perception is achieved at three levels.  Initially, fragmented
sensory data gathered by robots are filtered, analyzed, and
streamlined into a more geometrical representation, i.e., lines,
and curves. Next, robots are localized through using a
localization technique [15].  Figure 3 illustrates gradual world
perception construction of a robot navigating a simulated
indoor environment.  Secondly, localization of robots within the
environment is performed to localize the robot via a target
tracking technique [16].  The refined world perception
information along with estimated global positions of the located
robots are registered in a lookup table for further processing.
From the world perception information, we extract world
geometrical features.  A connectivity check is performed to

identify neighboring line segments that closely represent a
certain environment feature.  The line segments belonging to a
detected environment feature are marked accordingly along
with a degree of certainty in another lookup table.   To infer a
robot's task plan and the world model, we use the latter lookup
[16].
For deliberative task planning, cooperative robot team members
must be planned based on a certain governing behavioral
scheme.  Some approaches in literature considered evolution of
such governing behaviors as a way of demonstrating the
cooperation among robots in an emergence way [10].   Some
others attempted to motivate robots into cooperation [6].  While
others have proposed consenting agents with mechanism for
negotiation among cooperative agents [11].  For practical
purposes, algorithmic techniques have shown good stability and
performance [12,13].  We have developed different cooperative
robots behavior-based algorithms for different applications [19-
21].
Supervisor supports different multi-agent robot platform, (see
Figure 4) and a number of cooperative navigational deployment
strategies.  Each robot by itself can be assigned variety of
distinct behavior-based navigational schemes while engaging in
a cooperative task.  Each subsumption-based navigational
behavior controls interaction of a robot with the environment
and arrives at common decisions regarding turning and steering
requirements of the robot for a given situation.
Supervisor handles task planning of cooperative robots using a
high-level object-oriented language that will be discussed
shortly.  Supervisor recognizes two groups of task instructions.
The first group of task instructions deals with mobility
requirements of robotic vehicles and the other group deals with
sensory requirements of cooperative robots (i.e., an instruction
that activate the robot to perform an environment sensing
operation).

Supervisor handles the Deliberative tasks with the highest
priority while paying coarse attention to detailed of mobility of
robots.  In coordinated task planning of cooperative robots,
coherence task planning of cooperative robots is very critical.
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Figure 2. Modular Architecture of Supervisor Mobility Controller

Figure 3.  (a) A Simulated Robot World, (b) Reflection of
Robot’s Range Sensors Data as the Robot Navigates its Path, (c)
Constructed Robot World Model Based on Sensory Data
Fusion.
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Equally important, is the interaction between deliberative and
reactive behavioral arbitration of cooperative robots.   At the
highest level of task planning, the mission plan can be designed
using structured syntax and semaphore directives.  Refer to
Figure 5, for an example of cooperative robot task
programming scheme.   Supervisor has a parser that interprets
abstract textual task commands as shown in the example.    A
double linked list buffers all task instruction with a time stamp.

Def  Task1
Channel: 1,2,3                         // Assign Channel 1,2,3 For Comm
Vel: 5,5,5                       // Assign Velocity 5 in/s to Robots 1,2,& 3
Acc: 3,3,3                   // Assign Accelecration in/s2 to Robots 1,2,3
Loc:  (10,30),(40,30),(60,-20)              // Assign 3 Vectors for the
                                                                            // the robots to follow.
NavBeh:  1,2,1               // Set Navigation Behaviors of Robot 1, 2,
                                  //& 3 to Navigational Id # 1,2, 1 Respectively .
MC: 1                                 //Turn on Continuous Processing Mode
Go: 1,1,1                            // Execution queued motion commands
                                                                         // for Robots 1, 2, and 3.
Wait  t >4000                       // Wait until 4000 ms time is elapsed.
CapImg: 1,,1                       //Have Robots 1 and 3 capture images
                                                                                // of their direction.
LMScan: ,1,                               //Have Robot 2 Scan Using Laser
                                                         //Measurement Range Finder.
Go: 1,1,1              //Now, have all 3 robots to perform their sensing.
WaitAck: 1,1,1                      //Wait Until All Robots Acknowledge
                                              //Completion of Their Specific Tasks.
MC: 0                                //Turn off Continuous Processing Mode
EndDef                                                    //Terminate Task Block.

Figure 5. An Example of Task Programming of Cooperative
Robots .

For synchronization purposes, all motion commands and
sensory data acquisition operations are buffered in a temporary
transit queue until a trigger statement is executed.   Execution
of buffered commands is performed in the order that the

commands have been received.  In the example below, for
instance, some preparatory commands set up communication
channel, and preset velocity and acceleration of robot.  The
command Loc assigns three positional vectors to the robots to
follow.  The parameters of the Loc function define position and
heading angle requirement of corresponding robot in inch and
degree respectively.  Next, proper navigational behaviors are
assigned to individual cooperative robots.  Instruction Go
causes execution all buffered task plans to begin with the
predefined task requirements, i.e., robots should presume a
velocity 5 in/sec and an acceleration of 3”/sec2. With
continuous processing mode on, execution of commands
proceeds right after executing Go statement without any delay.
Next, the task command processing is delayed for 4 seconds
before robots 1 and 3 are assigned to capture image along their
heading direction, while the robot 2 is assigned to scan its
heading for detection of obstacle.  The last Go statement causes
transmission of proper sensory data acquisition instruction to
robots.

3. CONTROL SCHEMES FOR TASK PLAN
TESTING OF COOPERATIVE ROBOTS

In practice, a mission plan may comprise of many sub-task
plans – requiring cooperative to do many tasks either in
synchronization or independent but in harmony.  Each sub-task
plan may consist of many symbolic notions of activities.
Figure 6 shows one such sub-task plan where four robots are
employed to rapidly create a consolidated world perception of
their unknown environment.  In this scenario, each robot's
behavior is set to be reactive.   Without explicitly defining
individual navigational task of each robot, we applied a simple
deliberative learning strategy. In this technique robots are
rewarded more for exploring unvisited area of the world.    The
Supervisor performs two operations in this scenario - gathering
range data from individual robots and fusing the range data to

Figure 6.  (a) A Simulated Scenario of Cooperative Robots
World. (b) World Perception Model Based on Range Sensor Data
Fusion of Cooperative Robots (c) World Perception of each of
four individual Robots.

Adaptive 
Fuzzy-Logic

Reflexive

Virtual
Potential-Field

Uniform-
Guarded

Non-Uniform
Guarded

Adaptive 
Neural-Net-Based

Rule-Based

Laser-based

Gate-Ways
Following

Landmarks
Following

Search
 Targets
Group 

Marching

Group 
Formation
Terrain

Mapping
Targets

Tracking

Follow-The
Leader

Neighbor-
Referenced

Tactical
Maneuvers

Terrain
Following

Turn

Cooperative Navigational
Deployment Strategies

ActuationActuation

Subsumption-based
Navigational Behaviors

Multi-Agents
Assignment

Adaptive
Schemes

Steer

PriorityPriority

Figure 4.  Cooperative Behaviors and Behavior-based Navigational 
Alternative of Multi-Agent Robots Supported by the Supervisor 
Mobility Controller. 

Adaptive 
Fuzzy-Logic

Reflexive

Virtual
Potential-Field

Uniform-
Guarded

Non-Uniform
Guarded

Adaptive 
Neural-Net-Based

Rule-Based

Laser-based

Gate-Ways
Following

Landmarks
Following

Search
 Targets
Group 

Marching

Group 
Formation
Terrain

Mapping
Targets

Tracking

Follow-The
Leader

Neighbor-
Referenced

Tactical
Maneuvers

Terrain
Following

Turn

Cooperative Navigational
Deployment Strategies

ActuationActuation

Subsumption-based
Navigational Behaviors

Multi-Agents
Assignment

Adaptive
Schemes

Steer

PriorityPriority

Figure 4.  Cooperative Behaviors and Behavior-based Navigational 
Alternative of Multi-Agent Robots Supported by the Supervisor 
Mobility Controller. 



construct a world perception model as shown in the upper right
hand corner of the figure 6.  As the sonar range data become
available, the world model is progressively constructed.  The
world model is partitioned into matrix of cells.  Each cell will
have a certain potential depending upon total number of sonar
data point that it contains.  The Supervisor creates a gradient
field based on potential of each cell.  The robots are then
command to explore world environment with low gradient
slope.   To encourage the robots to explore the entire area, they
are rewarded more for exploring the areas that they have not
visited before.   By adjusting the rewarding weights, the
navigational behavioral of the robot are tuned.  To prevent the
robots from over exhaustion in their search, a time-based
terminating condition is imposed that is if the new world
discovery slows than behind a threshold over a fixed period of
time, then the navigational search should stop.     The algorithm
was tested on a team of five cooperative robots.  One robot
from the group becomes as anchor and monitors operations of
its other team members using its on-board surveillance camera.
Localization of cooperative searching robots is performed using
an image processing technique that localizes the cooperative
robots in the image frame of the surveillance robot.  The
physical robotic test bed is shown in Figure 7. Coordinates of
the robots in the image frame are next mapped to the world
coordinate with the center of the camera at the origin [22].  A
total of twenty tests were conducted to assess performance of
the cooperative robotic team in detecting a total of 10 cans of
cokes randomly located on the floor within an area of 20'x20'.

Figure 8 shows the results of experimentation.  On average over
86.5 percent of time, all 10 targets were located with 99 percent
confidence level.   Figure 9 indicates the total time efficiency of
the system in detecting all targets.     While time efficiency of
the system can serve as a basis for evaluation of intelligence of
the robots, but some small adjustment in the control behaviors
of the robots can have significant effect on overall efficiency of
the system.  Perhaps for reducing wondering time delay of the
robots.

4.  CONCLUSION

Cooperative robots have many practical applications.   In this
paper, we have discussed architecture of a Supervisory
Mobility Controller with capability to facilitate deliberative/
reactive task deployment of cooperative robots.  Some of the
issues regarding robot's intelligence requirement at robot
platform level and at cooperative robots level were discussed.
To have fully functional cooperative robots, many research
issues need to be addressed and taken into consideration.  At
present time, there is no single established standard or in testing
procedures of the cooperative robots' intelligence.  Measure of
performance and efficiency of intelligent robotic system are

(a)

(b)

Figure 7.  (a) Physical Cooperative Robot Test Bed.
Localization of Cooperative Robot Using Visual
Servoing Technique.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

Figure 8. Performance Measure oCooperative Robots in
Detecting Random Targets.

Trials

% Success

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 1 2 13 14 1 5 16 1 7 1 8 19 2 0

Trials

Time (min)

Figure 9. Time Efficiency of Cooperative Robots in
Detecting Random Targets.



very subjective and conditional.  Minute adjustments in control
parameters of a system can have significant influence over
performance and efficiency of the system.  Furthermore,
incompatibility and heterogeneity among the robots makes it
quite difficult to relate performance and efficiency of one
system to another - even from one robot to another in the same
platform and ranking.
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